|
|
2015 » Papers » Volume 1 » eLearning framework for understanding cryptography at all levels 1. ELEARNING FRAMEWORK FOR UNDERSTANDING CRYPTOGRAPHY AT ALL LEVELS Authors: Duta Cristina-Loredana, Gheorghe Laura Volume 1 | DOI: 10.12753/2066-026X-15-026 | Pages: 171-179 | Download PDF | Abstract
Nowadays security is needed in order to transmit confidential information over the network, which means that is required in everyday life of humanity. The best way to ensure data confidentiality is by using cryptography, which is considered an essential component in many modern applications. In this context, it is important for developers to understand how to efficiently and correctly implement security mechanisms and also how to apply them properly. In this paper, we present an eLearning platform for teachers, students, developers and other users interested in cryptography. The application allows users to experiment with cryptographic algorithms, and to learn how to implement, apply and evaluate cryptographic concepts. The eLearning framework encourages users to develop their own cryptographic algorithms and to verify them, by including a wide variety of cryptographic mechanisms for symmetric and asymmetric algorithms and many analysis tools. For instance, it allows users to analyze the randomness of the generated data, to determine the performance in terms of speed and throughput, and to evaluate the cryptographic properties of substitution and permutation functions. Moreover, the framework allows the user to test all the cryptographic algorithms that are included and to add new cryptographic algorithms for testing, without requiring the application to be modified. Additionally, it provides flexibility, which means that the existing or new algorithms can be fully parameterized by the users. Also the cryptographic eLearning platform allows users to track the execution of complex algorithms on real world examples in a step by step detailed view. It is an easy-to-use application, which offers a consistent and rich user experience. | Keywords
eLearning, education, cryptography, security, cryptographic framework |
|
|
|